ber of variables

\/ 1.6. GENERALISED CO-ORDINATES

To describe the configuration of a system, we select the smallest possible num
These are called the generalised co-ordinates of the system. We shall not restrict our choice only
cartesian co-ordinates. In many cases these are not the most convenient co-ordinates in terms of
which we are to describe the motion of the system. A set of generalised co-ordinates is any set of
co-ordinates which describe the configuration. We wish, sometimes, to introduce not all
co-ordinates with respect to a fixed co-ordinate system but some of them may be selected with
respect to a new origin or to a moving co-ordinate system. For example, in dealing with rigid body
motion, we specify three cartesian co-ordinates to locate the centre of mass with FerC‘;‘t to an
external origin and three angle co-ordinates relative to origin at the centre of mass. Thus the
generalised co-ordinates §hou1d all be chosen the conventional orthogonal position ;c;;;rdilla‘tes or
all may be angle co-ordinates. In fact all sorts of quantities may be impressed to serve as

generalised co-ordinates. Thus the amplitudes in a Fourier Series expansion a; may be used 35
generalise(_i co-qrdmates, L apgleg with the vertical in a double pendulum, th d‘:‘;lnc? s along
the path of motion from the equilibrium Position in case of a bhobigSnand » the distance s al :
lane, or we may find it convenient to emp] " 2 ol pendulum moving in a vertica
plane, : ploy quantities having dimensions of ene angular
momentum or time. NS energy, ang

¥ . Sy W50 ’ : £ 3 Dy : ¥ 5
Constrainis i £ae cias o- 4 TiEld l.)o.dy are not independent if we expross them i oy of
mutual distances (see chapter on rigid body motion). RS Wiem an terms of the constancy
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(QH(‘S“UH arises how to choose a suitable set of }‘,*‘!ti'k;:il‘wwi co-orchinates 1n a given situation ?
In doing so we must be guided by the following three principles
(1) Their values determine the configuration of the system
(11) They may be varied arbitrarily and independently of each other, without t tolating the
constraints on the system
(i) There is no uniqueness in the choice of generalised co-ordinates. Then our choice should
fall on a set of co-ordinates that will give us a reasonable mathematical simplification of
the problem.
Notation for generalised co-ordinates : Generalised co-ordinates are designated by letter
g with numerical subscripts; Q1 92, -+ q, represent a set of n ;uqu:r’ulihhd co-ordinates; or,
alternatively, by a letter subscript to ¢ and specifying within brackets the numerical values that
the letter subscript is allowed to take, e.g., q;(J=1,2,...n). When we switch over to describe a
specific problem, the symbols g4, g9 ... corrcépond to co-ordinates that we choose to describe the
motion. Thus when a particle moves in a plane, it may be described by cartesian co-ordinates
x, y or the polar co-ordinates, r, ® and so on, and we write :
gi1=x or q1=l‘=\/(x2+3’2)>
.
q2=Yy QQ=e=tan—1%' ... (8)

When the problem involves some spherical symmetry, it is suitable to use spherical
co-ordinates :

qi=r=02+y2+22)V2
SR AR | S 2 (S

go =0 =cot (x2+y2)1/2 o A9)
A

g3=0=tan"'2

If it is preferred to accept a co-ordinate system moving uniformly with velocity v in x- direction,
generalised co-ordinates are

q1=x —xt.
Qo =y x = v = constant. ... (10)
g3 =2=2.

For a rod lying on a plane surface, capable of taking any orientation, the suitable choice of
co-ordinates to describe the configuration of the rod will be the cartesian co-ordinates & and n to locate
any point A of the rod and angle 0 indicating the orientation of the rod with respect to the co-ordinates

axes OX and OY. Then

q1=5,

gg =", A Al)

gz =8¢
If z, y denote the cartesian co-ordinates of any other point B of the rod, distant r from the previous
fixed point A, we have the connection between x,y and ¢, n, 6 as

x=&+rcos 0 y=mM+rsin0 .. (12)
=(q1trcosqs =qg +r sin g3

relative to axes OXY. In the transformation relations, r is simply a number. It cannot be treated as
distinet co-ordinate; for, r cannot be varied without violating the constraint that the distance of two

pa:t«i;):f;s must remain constant in time. That is why we suppress explicit reference to such
numpers.
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In general, we can always axpress generaligsed co-ordiniate

\‘Uw\l\i\“.ll;-h, ;!l\\t }Nlh:\]hl\ function oi Lime “/f CUs M 1
Q15q) Y181 X2 I D=2y 1 ENYY
72 = 4o Ve Y1 =1 l) ¢
- d
)i, 2 Zar, L)
dan = qyn Xy, Vi, #4 i . '
Har a system of N particlos froo from constraints which require the specifica Beneryly, ;
! p ¥ i P83 of ' . 3
co-ordinates, Eqs. (13) are then the transformation equations from a s« of 3 Hogy ‘
the number of genepy); i

co-ordinates to 8N generalised co-ordinntes. If constraints are present

co-ordinates will be reduced accordingly. And, since we accept the co-ordinales g
P . ; ' : swnress cartesian co-ord

specitying the configuration of the system, it must be possible to express cartesian co-

terms of them and vice-versa :

(/’

X1 =X ((]], Gy ceveee G3N, t)
Y1=1(91, G2, coven: qaan: b
ZN=2N (ql, (0], PR 43N If).

The necessary and sufficient condition that the transformation from a set of Cr)—f;rdjnut.z-.
9;U=1 2, ... 3N) to the set (xq, y1, ... zy) is effective is that the Jacobian determinant J of eqs. (17
be different from zero at all points, i.e.,
dq1 dqg  dqzy
axl axl axl
d Tole dq: 7
d(q1, 92, --- Q3N ﬂﬂflﬂ
( ) = ax2 a.“L‘z a.lg # 0
0 (%1, Y1, - 2N

J(QI» 42, --- d3N )
X1, Y15 --- 2N
991 993 dgzN
dzpy dzy - dzy
If this condition fails to hold, eqgs. (13) do not define a consistent set of generalised co-ordinates
If the Jacobian determinant does not vanish, the co-ordinates g; are as effective as the cartesian

co-ordinates in describing the kinematical motion of the system and are most convenient to use.
Some examples of mechanical systems and the generalised co-ordinates to be associated are

given below :

i System " Generalised Co-ordinates

1. Simple pendulum 6; the angle which the pendulum makes with vertical line through point of
suspension. e

[2. Fly-wheel 0; the angle between a definite radius of the fly wheel and fixed line

! perpendicular to the axis, |
!3 Particles on the surface |6, ¢ ; the usual polar angle of a point on the sphere. ‘
;r {

of a sphere.
]4 Beads of an abacus % ; the cartesian co-ordinate along the horizontal wire.
j5. Hydrogen molecule ©Y,2,0,Y;x,y,2 are the cartesian co-ordinates of the centre of
| molecule ; ¢ and y the angles of rotation about two mutually perpendicularf
| axes through centre, A0da |
] ’
‘6. Particles moving on r, 0 ; r the radi » dirs A |
e ?ﬁde gurface og}'a particle and anu;k:’ Zcf){f)'lt}cxl:)u?vg'“ om the vertex as origin to the position of the
e : g raaius vector with a fixed slant edge of the cone. |
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