Derivation from position momentum uncertainty principle. To obtain the time energy uncertainty principle from position momentum uncertainty relation consider the case of an electron of mass m moving with a velocity v so that its kinetic energy

$$E_k = \frac{1}{2} mv^2$$

Taking the mass of the electron to be constant, the uncertainty in the measurement of $E_{\boldsymbol{k}}$ is given by

 $\Delta E_k = \Delta \left(\frac{1}{2} m v^2\right) = m v \Delta v = v \Delta p$ $v = \frac{\Delta x}{\Delta t}$

 $\Delta E_k = \frac{\Delta x}{\Delta t} \Delta p$

 $\Delta x \cdot \Delta p = \Delta E_k \cdot \Delta t \ge h$

Now the velocity

More accurately $\Delta x. \Delta p = \Delta E_k. \Delta t \ge \frac{1}{2}. \frac{h}{2\pi} = \frac{1}{2} \hbar.$ 1. Nome - Do. climagh Singh 2. subject - PHYSIAS 3. Paper - V 4 class - TOI-III 5. Topic - Time-oncorentum uncertainty Posmible Date - 16-09-22